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Let w={w(x) :xeZ  a} be a positive random field with i.i.d, distribution #. 
Given its realization, let Xt be the position at time t of a particle starting at the 
origin and performing a simple random walk with jump rate w i(Xt). The 
process X =  {X,:t >~ 0} combined with w on a common probability space is an 
example of random walk in random environment. We consider the quantities 
A,=(d/dt)Eu(X~-M-at)  and At(w)=(d/dt)Ew(XZ-m-lt).  Here E ,  is 
expectation over X at fixed w and E u = SEw #(dw) is the expectation over both 
X and w. We prove the following long-time tail results: ( 1 ) l i m t ~  td/2A,= 
V2Ma/2-3(d/2g) a/z and (2 ) l imt_~  tcl/4Ast(w)=Zs weakly in path space, with 
{ Z s :s > 0 } the Gaussian process with EZs = 0 and EZrZ, = VZM a/z-4(d/2g)d/2 
(r+s) -a/z. Here M and V z are the mean and variance of w(0) under #. The 
main surprise is that fixing w changes the power of the long-time tail from 
d/2 to d/4. Since At=MEuo([w-I(Xo)-M-a][w-I(X~)-M-1]),  with #0 the 
stationary measure for the environment process, our result ( i)  exhibits a 
long-time tail in an equilibrium autocorrelation function. 

KEY WORDS: Random walk in random environment; long-time tail; 
environment process; local times; spectral theorem; Tauberian theorem; 
functional central limit theorem. 

I N T R O D U C T I O N  A N D  S T A T E M E N T  OF RESULTS 

I n  Lorentz  models a p a r t i c l e  r a n d o m l y  m o v e s  in  R a o r  Z a wh i l e  i n t e r a c t i n g  

w i t h  a s t a t i c  r a n d o m  e n v i r o n m e n t  t h a t  i n f luences  i ts  m o t i o n .  O n e  of  t h e  

p h y s i c a l l y  i n t e r e s t i n g  q u a n t i t i e s  is t he  equilibrium velocity autocorrelation 
function of  t h e  pa r t i c l e ,  w h i c h  is b e l i e v e d  to  d e c a y  l ike 

E ( V o V t ) ~  - A t  d/2--1 (t---l" (30) (0. l )  
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with A > 0 some model-dependent amplitude. Here E is the expectation 
over motion and environment, and V, is the velocity of the particle at 
time t. Such slow decay is called a long-time tail in the physics literature. (13) 

If X , =  ~o' Vs ds is the displacement of the particle at time t and 
{ V t : t/> 0 } is a stationary process, then 

~ EX, 2 = E ( V  o Vt) (0.2) 

This shows that the long-time tail also exhibits itself as a correction to the 
diffusive behavior 

E X ~ D t  (t--* oo) (0.3) 

with D the diffusion constant. 
The origin of long-time tails in equilibrium autocorrelation functions 

is well understood heuristically. The slow decay arises because the particle 
may return to sites visited earlier and recognize the medium. This induces 
a memory effect, which is governed by slowly decaying return probabilities 
that are typical for diffusive motion. However, such an explanation is 
rather vague, and indeed it seems to be very difficult to get mathematically 
precise results in concrete models. To our knowledge, refs. 2, 3, 6, 7, and 
12 are the only papers where long-time-tail results are proved rigorously. 

In the present paper we study the so-called random waiting time 
model. ~5) Let 

w = {w(x): x e Z e} (0.4) 

be a collection of random variables with values in (0, oo) and with joint 
distribution # satisfying 

(i) # is stationary and ergodic under translations 

(ii) f w ~(O)/~(dw)< oo (0.5) 

( .  

(iii) j w2(O) #(dw) < c~ 

The collection w is called the environment of waiting times. Given w, let 

X =  { X  t" t~>0} (Xo=0) (0.6) 

be the continuous-time Markov process on Z d with generator 

1 1 
- -  ~ I f (y )  - f ( x ) ]  (0.7) L w f ( X )  - w(x)  2dr.: ly ~1  = 1 
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i.e., simple random walk with jump rate w-a(X,). Then the random waiting 
time model is defined as the combined process (X, w). This is an example 
of random walk in random environment. 

If w is distributed according to /~, then the particle is not "in 
equilibrium with its environment," i.e., 

W,: x ~ w ( x + X , )  ( x ~ Z  ~) (0.8) 

is not stationary, and neither are the increments of X,. However, if w is 
drawn not from/~ but from/~o given by 

duo w(0) 
M = I w(O) #(dw) (0.9) ( w )  - M ' 

then W, is stationary, ergodic, and even reversible (see Proposition 1 
below). 

Our first result concerns the correction to the diffusive behavior 

E~X 2, ,,, M - i t  (t ~ ~ )  (0.10) 

where E u denotes the expectation over walk and environment. To see the 
connection with long-time tails, we establish the relation (see Proposition 3 
below) 

M - I A , = E m ( [ w - a ( X o ) - M - ~ ] [ w - ~ ( X , ) - M - 1 ] )  (0.11) 

with 

d E 2 d , = ~  , ( X , - - M  lt) 

This is the analog of (0.2) and expresses the correction to (0.10) in terms 
of an equilibrium autocorrelation function. The jump intensity w-a(X,)= 
W~-a(0) is the analog in our model of the velocity V, in Lorentz models. 
In Section 3 we prove: 

Theorem 1. Let /~ be i.i.d, and let M and V 2 be the mean and 
variance of w(0) under #. Then 

lim td/2•t= v2md/2 3( d~ d/2 ,~ ~ \ ~ j  (0.12) 

Our second result concerns what happens when w is fixed, i.e., we 
consider the random variable 

d 2 
d,(w) = -~ Ew(X t -- M-at) (0.13) 
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where E w denotes the expectation over the walk given w. In Section 4, we 
prove: 

Theorem 2. Let # be i.i.d, and suppose that: 

(i) #(w(0) >/a) = 1 for some a > 0. 

(ii) S er176 p(dw) < ov for r in a neighborhood of zero. 

Then we have 

lim ta/4As,(w)=Zs weaklyon D ( [ e , ~ ) , R )  forall  ~ > 0  
t ~ o O  

(0.14) 

where D([~, ~ ) , R )  is the Skorokhod path space and {Zs : s>O}  is the 
Gaussian process with 

EZs = 0 

EZ,  Zs = V2M a/2 4 ( d 
d/2 

\G/ (r + s) a/2 

(o.15) 

The main surprise is that the powers of the long-time tails differ by a factor 
2, namely, t -d/4 for fixed environment as opposed to t -a/2 in averaged 
environment. 4 

Our paper is organized as follows. In Section 1 we start with defini- 
tions and basic relations. In Section 2 we give a heuristic derivation of the 
long-time tails. In Sections 3 and 4 we give the full proof of Theorems 1 
and 2. 

1. DEFIN IT IONS A N D  PRELIMINARIES 

In this section we set up the model, introduce the environment 
process, and establish some basic relations. 

1.1. Random Walk  in Random Environment  

Let 

= {w: z (o, (1.1) 

4The same phenomenon was found by van Beijeren (13) for a simple random walk on a 
random subset of the one-dimensional lattice Z. The additional fluctuations due to the 
randomness of the medium are called "Sinai fluctuations." 
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An element of (2 is called an environment of waiting times. A random 
environment of waiting times is a random variable with values in f2 and 
distribution It satisfying 

(i) It is stationary and ergodic under translations 

(ii) f w l(0) It(dw)< oe 
d 

(1.2) 

Given w e f2, define the operator Lw formally by 

1 1 
Lwf(X) = w(x---) 2de~sd [ f (x  + e) -- f ( x ) ]  (1.3) 

where Sd = {e e Zd: le[ = 1 } is the set of unit vectors in Z a. Under asump- 
tion (1.2)(ii), Lw is #-a.s. the generator of a Markov process {X,: t~>0} 
(Xo=0)  on Z a (ref. 4, p. 815). The latter is called the random walk in 
environment w. The interpretation of Lw is the following. From position x 
the walk jumps at rate w l ( x ) ,  i.e., has an exponential waiting time with 
mean w(x). When the walk jumps it goes to one of the nearest neighbor 
sites x + e with equal probability 1/2d. 

Let Pw denote the path space measure associated with Lw. Define the 
random walk in random environment It as the process {Xt: t~>0} on Z a 
(Xo = 0) with path space measure 

P. = f ew ~,(dw) (1.4) 

1,2. S i m p l e  R a n d o m  W a l k  ( S R W )  

If w(x) -- 1 for all x ~ Z a, then Lw is the generator of the simple random 
walk with transition probabilities 

pt(x, y )= ~ e 
t n 

.=o '~P"(X' y) (1.5) 

where 

P~ Y) = fix, y 

p l ( x , y ) = l / 2 d  if y = x + e  for some eeSa  

= 0 otherwise ( 1.6 ) 

p"(x, y) = ~ pl(x, z) p"-  l(z, y) (n >~ 2) 
z ~ Z  d 
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Since this process plays an important role in what follows, we give it a 
separate notation, namely {~',: t/>0} (~'o = 0). The associated path space 
measure is denoted by P. 

1.3. Environment  Process (EP) 

The environment process plays an important role in the study of par- 
ticle systems in random mediaJ 41 In our setting this is the process of 
environments of waiting times as seen from the position of the walk. 

More precisely, for w~U2 and a e Z  d let yaw be the configuration w 
shifted by a, i.e., % w ( x ) = w ( x + a ) .  The EP associated with {X,: t>~0} is 
defined as the process { W, : t >~ 0 } on s given by 

W, = vx, w (1.7) 

This has generator 

Lf(w)  
1 1 

w(O) 2d ~ [ f ( % w ) - f ( w ) ]  (1.8) 
e ~ S d  

(ref. 4, p. 817). With a slight abuse of notation we shall use the symbol Pw 
to denote the path space measure of the EP given w. 

1.4. Independent  Environment  Process ( IEP) 

It will turn out to be important to also consider the independent 
environment process { I~(t): t >~0) on (2 given by 

l~ ,= v~ w (1.9) 

i.e., the process of environments of waiting times as seen from an 
independent SRW (the walk observes w but does not depend on it). This 
has generator 

sTo,,) = • Z 2de~ & [ f (% w ) -  f (w)]  (1.10) 

Note that 

where ~: g2 --+ R is 

L = @ L  (1.11) 

1 
O(w) = (1.12) 

w(0) 
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The path space measure of the IEP given w is denoted by P .... and P~,= 

1.5.  R e v e r s i b l e  M e a s u r e s  for  EP 

Assume in addition to (1.2) 

f w(O) ~(dw) < ~  (1.13) 

Proposi t ion 1. Let # satisfy (1.2). Define Po via 

d/~o w(O) 
- - ( w ) -  (1.14) 
a~, M 

where M = ~ w(0) p(dw). Then Po is reversible and ergodic for the EP. 

Proof. See De Masi et al., I4) Lemma 4.3. | 

The reversibility of/~o is equivalent to L being self-adjoint on L2(po). 

1.6.  A F e y n m a n - K a c  F o r m u l a  

The following proposition relates expectations for the EP with 
generator L to expectations for the IEP with generator/~, and is based on 
(1.11) and (1.12). 

Proposi t ion 2. For all )~ > 0, f ~  L2(/~o) and/~-a.s, all w 

o~dt e ;"Ewf (W,) 

= f fd t~ , , ( exp l -2 f~ds  l~s(0)] /~,(0) f(l~/,))  (1.15) 

Proof. The 1.h.s. of (1.15) equals ()~-L) -1 f(w). Via (1.11) 

(~.-c) ~ f ( w ) =  - L  (w) 

= f o ~ d t e x p [ - t ( ~ - L ) l ( f ) ( w )  

=f/dtEw(exp[-fodS~(17Vs)J(~),ITVt) ) (1.16) 

where the last equality follows from the Feynman Kac formula. Substitute 
(1.12) in (1.16) to obtain (1.15). | 
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1.7. Mean Square Displacement  

For xeZ  a write x2= Ixl 2 with I'l the Euclidean norm. 

P r o p o s i t i o n  3. For all # satisfying (1.2): 

(i) 2 X,- -S~ ds w ~(Xs) is a martingale w.r.t, the canonical filtration 
~(X,:O<~s<,t) for #-a.s. all w. 

(ii) A,=ME;,o([W-'(O)-M ' ] [ w  I(Xt)--M 1]). 
(iii) t--+ A, is completely monotonic. 

(iv) There exists a nondecreasing right-continuous function c~(7 ) on 
[0, oo) with c~(0)= 0 such that 

At=foe  ~'d~(~) (1.17) 

,Drool (i) Letf(x)=x 2. Fix w. Compute 

(L,,f)(x)=w-l(x)(2d) 1 ~ [(x+e)Z_xZ]=w-l(x) 
eESd 

Then use that f (X,)- f(Xo)-S'odsL, f(X~) is a martingale because 
{X,: t/> 0} is Markov with generator L,,, (ref. 9, Section 1.5). 

(ii) From (i) and (1.14) follows 

E,,(X~_M-lt)=E,,(f]ds[w I(Xs)_M 1]) 

=ME,lo(fodSW l(O)[w-l(Xs)--M-1]) 

=ME,,o(fodS[w-l(O)-M I][w-I(Xs)-M-I])(1.18)  

where the last equality uses that #o is stationary for the EP (Proposition 1) 
and E,0w I(0)=M-1. 

(iii) Note that by (ii) 

M 1A~= (~o, S(t) cp) (1.19) 

where (p(w)=w I(0)--M-1, ~., .) is the inner product over L2(#o), 
and {S(t): t~>0} is the semigroup of the EP on L2(#o) [recall (1.7)]. By 
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reversibility of #o (Proposition 1) the semigroup is self-adjoint and - L  is 
self-adjoint and nonnegative. Hence 

-~ (,p, s(t)  ~o) = (q,, LnS(t) ,p) 

= ( - 1 ) "  II(-L)"/2S(t/2)~oll 2 (1.20) 

(iv) This follows immediately from (1.19) and the spectral theorem 
for self-adjoint operators (see also ref. 14, Theorem 12 A). Because the EP 
is ergodic, - L  has a simple eigenvalue zero with corresponding eigenspace 
the constant functions. Since (q~, 1 ) =  E~0(p = 0, it follows that there is no 
contribution to (1.17) from 7=0.  | 

Proposition 3(iv) will be important later when we apply a Tauberian 
theorem for Stieltjes transforms. 

As a final preliminary, we use Proposition 2 to get an identity which 
relates the Laplace transform of (d/dt) EwX 2 to the local times of the SRW 
introduced in Section 1.2. Let 

l,(x) = ds 1 {~,=x} (t/> 0, x ~ Z u) 

i.e., the amount of time spent at site x up to time t by SRW. 

Proposition 4. For 2 > 0  and #-a.s. all w 

fo f; ( E  1) e ;"dEw X2= dtE exp -).2lt(x)w(x) 
�9 x 

Proof. By Proposition 3(i) and Proposition2 
[recall also (1.7)] 

--)d e dEw X 2 dt -~" = e Ew(W?I(0)) 

= f ? d t E w ( e x p [ - 2 f s  

Note 
Now write 

(1.21) 

(1.22) 

with f (w)= w 1(0) 

that E ,ow-Z(0 )=M 1E, w 1(0)<oo by (1.2)(ii), hencefELZ(po).  

fl ds w(X~)=~, l,(x) w(x) | (1.24) 
x 
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2. H E U R I S T I C  D E R I V A T I O N  OF L O N G - T I M E  TAILS 

In this section we give a sketch of how to derive the asymptotic 
behavior of (d/dO Ew X2 for t ~  oo by analyzing its Laplace transform 
(1.22) for 2--, 0. The full proof will be given in Sections 3 and 4. From now 
on we assume that 

(i) # i s  i.i.d. 

(ii) ( w  l (0 )#(dw)<o~ 
d 

(2.1) 

(iii) f w2(O) #(dw) < oo 

and abbreviate 

M = f w(O) #(dw) 

V 2 = f [w(O) - M]  2 #(dw) 

(2.2) 

We start from Proposition 4. Using the identity Y~.~ l ,(x) = t, we make 
a formal expansion of the r.h.s, of (1.22) for small 2 as follows: 

Jo e 2 

= d t e  ;.M,~ exp - ) . ~ l , ( x ) [ w ( x ) - M ]  
x 

= d t e  ~.M, 1 - 2 ~ E l , ( x ) [ w ( x ) - M ]  
.v 

+ �89 2 ~ E(l,(x) l , (y))[w(x) - M ] [ w ( y )  - M]  . . . .  } 
v , y  

(2.3) 

At this point we do not worry about technicalities, such as the smallness 
of the expansion parameter. These will be handled later. The leading order 
term in (2.3) is 

fo~dt  e = (2.4) 
1 2 M r  

) .M 

and reflects 

E,.X2, = M - l t  + ...  (2.5) 
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which corresponds to the well-known result for the diffusion constant 

lim _1EwX2= lim~ 1 fl  , ~  t 7 d s E w W S I ( O ) = M  1 #-a.s. (2.6) 

If we subtract the leading order term in (2.3) and interchange the 
expansion with the integration, then we obtain 

o e ; " d E , . ( X ~ - M - ' t )  

= - 2  d t e  ~~'2~t,(x)[w(x)-M] 
x 

2 + �89 2 dt e ;.M, 2 E( l , (x)  l , ( y ) ) [ w ( x )  - M ]  [w(y) - M] 
x ,  y 

. . . .  (2.7) 

We now distinguish two cases: 

2.1 .  F ixed  E n v i r o n m e n t  

Via the identity El,(x)  = S'o ds ps(0, x) [recall 
leading order term in (2.7) may be rewritten as 

(1.5) and (1.21)] the 

~ dt e ;"~,(w) (2.8) 

where 
1 

~t(W) = M 2  ~ p,/M(O, x)[w(x) -- M] (2.9) 
x 

This suggests that 

d , ~ t ( w )  ( t - * ~ )  (2.10) 

To see what the order of magnitude of ~t(w) is, let us compute its variance 
under/~. Using the i.i.d, property of/~ and (2.2), this gives 

V 2 
p,2/M(0, x) 

V 2 
- M 4 P2,/M(O, O) 

~ C l t  a/2 ( t ~ )  (2. l l )  
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where Ca = Ca(M, V, d ) >  0 is computable via the local limit theorem for 
SRW. Hence {,(w) is of the order t d/4. Together with the structure of 
(2.9), this in turn suggests that we have a functional limit theorem 

lim ta/4~st(W)-=Z s ( s > 0 )  (2.12) 
t~oo 

with {Z,: s > 0 }  some Gaussian process. The combination of (2.10) and 
(2.12) yields (0.14) in Theorem 2 of the Introduction. In Section 4 we give 
the proof of the heuristic steps and identify the covariance structure of 
{Z~: s >  0}. To handle the technicalities, it will be necessary to assume 
conditions (i) and (ii) in Theorem 2. 

2.2. Averaged  Env i ronment  

If we average over w in (2.7) under/~, then the first term drops out and 
the leading order term becomes 

521 2 V2 dt e - ; ' M ' ~  ~12(x) (2.13) 
?c 

where we use again the i.i.d, property of /~ and (2.2). Via the identity 
Z.,- El2(x)  = 2 ~'o ds (t - s) p,(0, 0), the latter may be rewritten as 

where 

This suggests that 

Since 

dt e "~, (2.14) 

V 2 
~, = ~ Pt/M(O, 0) (2.15) 

A , ~ ,  (t--* m) (2.16) 

~, ~ C2 t d/2 ( t -*  m)  (2.17) 

the result of Theorem 1 in the 

A. The 2-expansion (2.3) makes sense, i.e., 2 Z x l , ( x ) [ w ( x ) - M ]  is 
small for typical w and for relevant t as 2-+ 0. 

C2 = C2(M, V, d) > 0, (2.16) implies 
Introduction. In Section 3 we give the complete proof. 

In order to make the above calculations rigorous, we have to prove 
two facts: 
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B. The asymptotic behavior of (d/dt )E~(X 2 -  M ~t) as t ~ ~ can 
be deduced from the 2 ~ 0  behavior of the expansion, i.e., a Tauberian 
argument can be given to conclude (2.10) and (2.16). 

3. PROOF OF T H E O R E M  1 

3.1. Large-Deviat ion Estimate for Local Times 

The following lemmas will be instrumental in settling problem A at the 
end of Section 2. 

k e m m a  1. For all 6 e (0, 1/2) there exist K, K >  0 such that 

P(supl,(x)>tl/2+6)<~Re -x'a/2 for all t~>0 (3.1) 
x 

Proof. Fix 6E(0, 1/2). Let {Yn:n~N} (Yo=0) be SRW in discrete 
[-with transition probabilities defined in (1.6)]. We use the same time 

symbol P to denote its path space measure. Define its local times 

L,(x)  = ~ 1 { rm = x~ (n ~ N, x ~ Z a) (3.2) 
m = 0  

First we prove that there exists K1 ~ (0, ~ )  such that 

P(supLn(x)>nl /2+a/2)<~(n+l)e  -x~"6 for all n 6 N  (3.3) 
x 

Indeed, let h(n)=[_nm+a/2_], with [_-J the greatest integer function. 
Then the 1.h.s. of (3.3) is bounded above by 

P(sup L,(x)  > h(n) ) 
x 

<~ Z P(L , (Y i )>h(n) ,  Y ~  Yi forO<~j<i)  
O<~i<~n 

~< (n + 1) P(L,(0) > h(n)) (3.4) 

Let p~ (k ~> 1) denote the time at which Y, returns to the origin for the kth 
time. By the Markov inequality 

P(L,(0) > h(n) ) = P(Ph(,) <<- n) 

~< inf (er162 h(")) (3.5) 
~ > 0  

because Pk is a sum of k independent copies of Pl. The following identity 
is standard (ref. 10, Proposition 1.2): 

E e - r  l(e r (3.6) 

822/69/3-4-19 
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where 

G(z) = ~ z ' P ( Y ,  = 0) (3.7) 
n ~ O  

Since for any d>~ 1 there exists A~> 0 such that P( Y,, = 0)~< A ~n- ~/2 for all 
n (ref. 10, Proposition 7.6), we have from (3.6) and (3.7) 

Ee-e-~ -&r forall ~ > 0  andsome A 2 > 0  (3.8) 

Now take ~--[A2h(n)/2n]  ~-, the value where the bound (3.5) attains its 
infimum after substitution of (3.8). This gives 

fi(L,,(O) > h(n)) ~<exp[-A~h2(n)/4n] 

Substitution into (3.4) yields (3.3). Next we note that 

LNt( .g  ) 

l,(x)~< y, %(x) (3.9) 

where N,=max{jeN:Y~o<.~<.jr~<~t} is the number of steps of SRW in 
continuous time prior to time t, zi is the ith waiting time, and rk(x) is the 
kth waiting at x. Note that r, and the r~(x) are i.i.d, exponential with mean 
1 (and that {%:0~<i4N,}  = { r k ( x ) : x e Z  d, O<~k<~LN,(x)}). Hence 

ag(sup l,(x) > t 1/2 +~) ~<P(N, > ~_2t_J) + )3(sup LL2,0(x ) > [ 2tJ 1/2 +a/2) 
x v 

+ P(zi > ~�89176 for some 0 ~ i ~  [ 2t.J) 

<~ e -x:'  + e -~'~ + e -x4#2 (3.10) 

The second term in the r.h.s, comes from (3.3). The other terms are 
standard estimates. | 

The following lemma derives from Lemma 1 and will be important in 
the sequel. Define the event 

A,,~.~.a = {sup l,(x) <~ ) -~(i/~+a)} (3.11) 
x 

L e m m a  2. F o r ~ > 0 , 6 ~ ( 0 , 1 / 2 ) , a n d t ~ [ 0 , ) ~  -~] 

, .< , , ~ ~ . e _  K;-~,, 2 

Proof. Straightforward from Lemma 1. | 

(3.12) 
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3.2. ~-Expansion for  T r u n c a t e d  Laplace Integral  

Start from Proposit ion4 and average (1.22) over # using the i.i.d. 
property 

where 

;o ;o ( [  ]) e ;,tdE, X 2= dtE~ exp - 2 ~ l , ( x )  w(x) 
x 

(3.13) 

F(~.)= f e -r176 M3 #(dw) (~/>0) (3.14) 

In Lemma 3 below we show that there exists ~ > 1 such that if the integral 
in the r.h.s, of (3.13) is restricted to t e  [0, 2 ~], then it can be expanded 
for small 2. In Section 3.3 (Lemmas 4 and 5 below) we show that the 
remaining part of the integral is negligible. 

Lemma 3. For c~ ~ (0, 4/3) and ~ > 0 sufficiently small 

= f o - ~ d t e - ~ M ' { l + � 8 9  -~-'~/2) 
x 

(3.15) 

ProoL By Lemma 2, and the fact that the integrand in the 1.h.s. of 
(3.15) is at most 1 [recall (3.13)1, 

= Jo dt e aM, ~ F(2l,(x)) A,,x,~,z + O(e -x-~/~) (3.16) 

On the event At, x,~, ~ 

2l,(x)<~21-~(1/2~) forall x and t ~ [ 0 , 2  -~] (3.17) 

Hence, if 

1-~(�89 (3.18) 
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then we can expand F in (3.14) using (2.2) to obtain 

F(2l,(x)) = 1 + �89 + o(1)1 (2 --, 0) (3.19) 

where the o(1) tends to zero as 2--*0 uniformly in x and t~ [0 , ,~ - ' ] .  
It follows that 

Next use Zx lt(x)= t to note that on the event At, a,~,~ with t e  [0, 2 -=] 

22 ~ l ~(x) ~< 22t sup It(x) ~< 22- ~3/2 + ~) (3.21) 
x 

X 

Hence, if 

2 - ~(3 + 6) > 0 (3.22) 

then we can expand the exponential in the r.h.s, of (3.20) to prove the 
claim. The restrictions (3.18) and (3.22) can be met by picking ~ E (0, 4/3) 
and 6 > 0 sufficiently small. | 

3.3. Remaining Part of Laplace Integral 

For reasons that will become clear along the way, we split the 
remaining integration interval (2 -~, ~ )  into two parts, namely (,~-=, 2 - a ]  
and (2 -a, ~ ) ,  where ~ > 2 .  In Lemmas 4 and 5 below we show that both 
parts have a negligible contribution to the integral of the r.h.s, of (3.13) as 

2--*0. 

L e m m a  4. For  ~ e (1, 4 / 3 ) , / / >  ~, and 6 > 0 sufficiently small 

f~_= dt e-ZM'E F(2lt(x)) = 0((2  - a -  2 -=) e -z  ,~/2) (3.23) 

ProoL First note that the integrand in (3.23) is decreasing in t 
[recall (3.13)1. Therefore the integral can be bounded above by 2 - a -  2 -~ 
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times the value of the integrand at t = 2 - ' .  Next note that at t = 2 ~ we 
can use Lemma 2 and (3.20)-(3.22) to estimate 

e-)M'E (~x F(2l,(x)) ) 

<~e-~Mt~(exp{�89 l~(x) } A,,~,=,6)+ P(At~,~,=,6) 
= e  M;1-~[1 +0(1)]  +O(e -;'-~/2) | (3.24) 

Lemma 5. For f l>2  

Proof. 

Hence 

where 

Return to (3.2) and (3.9). First note that 

LN~(X) 1 
l,(x)>i E ~k(x) 

k=0 

=E~(exp[-2~x 't(x)w(x) ] Nt~L�89 -t) 

~ < ~  exp - 2 ~  ~ zk(x) w(x) +O(e -t) 
x k=O 

= ~ I(,L LL,/~j(x)) + O(e- ' )  

(3.25) 

(3.26) 

(3.27) 

i ( 1 )  ' 1(2,/) = 1 + 2w(0) #(dw) ( / e N )  (3.28) 

In (3.27) we use that the w(x) are i.i.d, under # and that the rk(x) are i.i.d. 
exponential with mean 1 independent of the w(x). 

Next, for e > 0 estimate 

1 )l{t>o} 
2(2, l) ~< u(w(O) < e) + p(w(O) f> e) (3.29) 
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Since #(w(0)<  e)--*0 as e--* 0, it follows that for e small enough (and all 
2 with 2 ~ 1) 

1(4, I) ~< e--(1/2) ~el{/>O} (3.30) 

Hence 

with 

l~ 1(4, LLt/2j(x) ) <~ e-(1/2) ~.~RL,/2j (3.31 ) 
x 

R , - - ~  1 {L.(x)>O) 
X 

the range of discrete-time SRW after n steps. Since 

(3.32) 

n + 1 = ~ L,(x)  <<. R n sup L,(x)  
x 

x 

it follows from (3.3) that 

P(Rn<n  1/2 a/2)<~(n+ 1)e Kltl6 

Finally, by combining (3.27), (3.31), and (3.34), we get 

exp( - -2Mt)E(1-[F(2 l , (x ) ) )  
x 

~< O(e - ' )  + exp( - �89189 1/2-a/2) 

+ (L�89 + 1) exp ( -K1L �89  

(3.33) 

(3.34) 

(3.35) 

If we now pick ~ =  ( f l -2) /3f l  and integrate (3.35) over t s  (4 ~, ~ ) ,  then 
the claim follows. | 

3.4. Spectral Representation and Tauberian Theorem 

At this point we have solved problem A at the end of Section 2 for the 
case of averaged environment. That is to say, by combining (3.13) with 
Lemmas 3-5 we have proved 

o e  -~t dEu(X 2 -  M lt) 

f? = 122V2[1 +o(1 ) ]  d t e - ~ ~ ' ~ 1 2 t ( x )  
x 

(3.36) 
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which corresponds to (2.13). To be able to conclude (2.16), we must also 
solve problem B. In other words, from the asymptotic behavior of the r.h.s. 
of (3.36) as 2 ~ 0 ,  computable via (2.14) and (2.15), we want to prove 
(2.16) and (2.17) via a Tauberian theorem. 

The application of Tauberian arguments usually requires some kind of 
regularity. In our case this regularity comes from Proposition 3(iv), which 
allows us to proceed as follows. Abbreviate the 1.h.s. of (3.36) as 

H(2) = J o  e-~' dE'(X2t - M- i t )  (3.37) 

Substitution of (1.17) gives 

H(2) = dc~(?) (3.38) 

i.e., H(2) is the Stieltjes transform of the positive measure d~(7). The main 
step in finishing the proof of Theorem 1 is the following proposition, which 
identifies ~(7) for 7 ~ 0. 

P r o p o s i t i o n  5. In d~> 1 

o~(7),~ vRma/2 3( d ~ a/2 1 7a/2 
\ ~ J  F(d/2 + l) (7--,0) (3.39) 

The proof is given in Section 3.5 below. Substitution of (3.39) into 
(1.17) yields (0.12) in Theorem 1 via a standard Abelian theorem (ref. 14, 
Theorem VIII.2.1 ). 

For the proof of Proposition 5 we need the following Tauberian 
theorem for Stieltjes transforms. 

T a u b e r i a n  T h e o r e m .  Let m > 0  and let ~(7) be a nondecreasing 
right-continuous function on 1-0, ~ )  with e (0)=  0. Assume that 

1 
f(2)  = Jo (2 + 7) m de(7) (3.40) 

converges for 2 > 0. Then for any A/> 0 and 0 ~< x < m the following are 
equivalent: 

r(m) 
~(7) ~ A  7 ~ (7 --,0) 

F(x + 1 ) F(m -- x) (3.41) 

f (2)  ~ A2 ~- " (2 --* 0) 

ProoL See ref. 1, Theorem 1.7.4. | 
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3.5. Proof of Proposition 5 

The r.h.s, of (3.36) may be rewritten as in (2.13)-(2.15). This gives 

V 2 
H(2) = ~/- 5 [1 + o(1)] G(2M) ( 2 ~ 0 )  (3.42) 

where 

G(2) = f :  dte-Ztp,(O, 0) ( 2 > 0 )  (3.43) 

In d =  1 the local limit theorem for SRW (re[ 10, Proposition 7.9) reads 

1 
pt(0, 0) ~ (2gt)1/2 (t -~ ~ )  (3.44) 

and hence by the standard Abelian theorem 

G(2) ,-~ \~-~] F 2 -1/2 (2--*0) (3.45) 

By combining (3.38), (3.42), and (3.45) with the Tauberian theorem for 
m = 1, x = 1/2, and A = V2M-5/2(1/2rc) 1/2 F(1/2), we find (3.39) in d =  1. 

In d~> 2 we cannot apply the Tauberian theorem directly because G(2) 
does not have a power law singularity. However, by the local limit theorem 
for SRW such a singularity occurs in the higher derivatives 

,~/d\d/2 (p 1--~d) "~d/2-1-p ~-1, 

Therefore, recalling (3.42), we have to consider (d/d2)PH(2) 
p > d/2 - 1. The rest of the proof uses the following two facts: 

~-~ H ( 2 ) ~ / - 2  [1 + o(1)] ~-~ G(2M) (p/>0, 2--* 0) 

n(2)~r(p+ 1) (,~ + s),+~ d~(s) (p~>O,,~>O) 

2---,o) 

(3.46) 

with 

(3.47) 

(3.48) 

The second is immediate from (3.38). The first follows from (3.42) and the 
observation that the differentiation w.r.t. 2 may be interchanged with the 
2-expansion in (2.3). This technical point is not entirely trivial, but can be 
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checked by a straightforward application of the exponential estimates in 
Lemmas 3-5. We refer the reader to the proof of Lemma 10 in Section 4.4 
for more details. 

By combining (3.46)-(3.48) with the Tauberian theorem for m =  
p + 1 > d/2, ~c = d/2, and 

d i 

\Gj 

we find (3.39). 

4. PROOF OF THEOREM 2 

4.1. Two Main Propositions 

For fixed environment w our quantity of interest 

d Ew(X  - M - ' t )  (4.1) 

is no longer a completely monotonic function of t. It therefore has no 
spectral representation as in (1.17), and consequently its Laplace transform 
cannot be written as the Stieltjes transform of a positive measure as in 
(3.38). This implies that we cannot use the Tauberian theorem, which 
played such a crucial role in solving problem B at the end of Section 2 for 
the averaged environment. 

The way out is to consider complex 2 and to do the Laplace inversion 
by hand for t ~ oe. The computations involve some technical estimates, for 
which we need the following restrictions on kt supplementary to (2.1): 

(i) /~(w(0)/>a)= 1 for some a > 0  
(4.2) 

(ii) j e r176 #(dw)  < oe for ~ in a neighborhood of 0 

Recall the random variable ~,(w) defined in (2.9), 

1 
~t(w) = M 2 ~ PrIM(O, x ) [ w ( x )  - M ]  (4.3) 

x 

The main obstacle in proving Theorem 2 is to prove (2.10), or, more 
precisely: 
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Proposit ion 6. In d~> 1 

lim ta/4[At(w) - ~,(w)] = 0 in/z-probability (4.4) 
I ---~ oO 

The proof is given in Sections 4.2-4.5. 
Once we have Proposition 6 it remains to prove the functional central 

limit theorem for r This is a rather easy task, because the PrIM(O, X) 
satisfy the local limit theorem for SRW and the w(x) are i.i.d, with finite 
second moment. The result is: 

Proposit ion 7. In d~>l 

lim ta /4~st(w ) = Z s weakly on 
t ~ o O  

D([~ ,~ ) ,R)  forall ~>0 (4.5) 

where D([e, ov),R) is the Skorokhod path space and {Z , : s>0}  is the 
Gaussian process with 

EZ~ = 0 

E Z r Z  s = V2Ma/2 4 ( d ~d/2 1 (4.6) 

The proof is given in Section 4.6. Propositions 6 and 7 yield Theorem 2. 

4.2. Laplace Inversion 

Define 

H(2, w) = f o  dt e Z'At(w) 

G(2, w)= f o  dt e-)"~,(w) 

(4.7) 

From the inversion formula for the Laplace transform we have that for any 
t~>0 and p~>0 

tP[At (w)-  it(w)] = d2 e ;'t - ~-~ [H(2, w ) -  G(2, w)] (4.8) 

where Cx= { i = x +  iy: y~R} (x>0)  is any vertical line in the complex 
right half-plane C+. We shall pick x = t -1 and show the following: 
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Lemma 6. For p sufficiently large 

limtd/4-Pfc d2e;=;(-- ~)P[H(~.,w)-- G(2, w)] = 0 
t ~ o o  t _  1 

in p-probability 

(4.9) 

Equations (4.8) and (4.9) yield (4.4) in Proposition 6. 
The starting point of our computation is the representation in (1.22), 

which still holds for 2 e C +  by analytic continuation. The idea will be to 
split C,-~ into two parts, namely 

CTt-~={2=t-~+iy:[y]<.t ~} (7~ (0, 1)) (4.10) 

and Ct-:\C~ 1, and to show that (4.9) holds for each part separately. In 
Section 4.4 we deal with C~_~ using truncation and 2-expansion of the 
Laplace integrals in (4.7) analogous to Sections 3.2 and 3.3 (Lemmas 8-11 
below). In Section4.5 we deal with C,-~\C~_~ using certain resolvent 
estimates for the EP and the IEP (Lemma 12 below). 

In Section4.3 we first prove a large-deviation lemma (Lemma7 
below) needed for the 2-expansion, i.e., problem A at the end of Section 2. 

4.3 .  L a r g e - D e v i a t i o n  E s t i m a t e  fo r  k Z, ,  I , ( x ) [ w ( x )  - M ]  

Abbreviate 
U, = ~ l,(x)[w(x) - M] (4.11) 

x 

From (4.3) and El~(x) = ~t o ds p,(O, x) follows 

d -  
~ E U , =  --M2~M,(w) (4.12) 

Consider the event At.i;~l.~.6 defined in (3.11) with 2 replaced by [21. 
Lemma 2 continues to hold with this replacement. 

kemma 7. For ~ E (0, 4/3) and 6, e > 0 sufficiently small 

sup Pu(12U, I>I2J ~ At.l~l,~.6)=O(e -'~1-~) ( s  (4.13) 

Proof. 
direction. By the Markov inequality and by the i.i.d, property of # 

' u ( [ 2 ,  Ut> ]2, ~ At,,~,.~.~) 

<~ e-'~' ~E (I]  O([2[1- 2~ lt(x)) At,,~,.~.~) 

Fix t~ [0, 12J ~]. We first prove the estimate in the upper 

(4.14) 
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P 

O(~) j er M] #(dw) (4.15) 

which exists for { sufficiently small by (4.2)(ii). On the event A,.l~.l.=.a 

1411 2~i,(x),.<1211-2~ ~(1/2+6) forall x (4.16) 

and so if 

1-2e--~(�89 (4.17) 

then we can expand in (4.15) 

O(1211-2~ lt(x))= 1 + �89 2 I,~1 = 4~ 12(X)[ 1 -{- O(1)] 

=exP{�89 2 I,Zl 2 4elZ(x)[l+o(1)]} (4.18) 

where the o(1) tends to zero as 141 ~ 0 uniformly in x and in t e  [0, 12[-=]. 
Substitution into (4.14) gives 

/~ (121U,>[~, ~ A,,,a,,=,a) 

<...e-I'~l-"E(exP{�89 At, lah=,a ) (4.19) 

on the event At, lal.=,a, because ~xl t (x)=t ,  and Now note that 
t~ [0, 121 ~], 

It follows that if 

then 

12(x) <<. t sup It(x) <~ 141-~(3/2+ a) (4.20) 
x 

x 

2 - 4e - ~({ + 6) > - e  (4.21) 

P~ (121U,>l~l ~ A,,,ah=,a)=O(e -Ial-~) (4.22) 

The restrictions (4.17) and (4.21) can be met by picking ~ ( 0 ,  4/3) and 
6, e > 0 sufficiently small. 

This proves the estimate in (4.13) in the upper direction. The lower 
direction is analogous [change from w ( x ) -  M to M -  w(x)]. | 
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4.4. Es t imates  for CV_~ 

In this section we prove (4.9) in Lemma 6 for the integral restricted to 
2 e  C~_~ (Lemmas 8-11 below). Lemmas 2 and 7 will play a crucial role in 
handling problem A, i.e., in showing that the 2-expansion is valid for 
the integral in (2.3) after truncation. Our starting point is the following 
relation, which follows from (1.22), (4.1), (4.7), and (4.11): 

Define the event 

1 H(2, w) f f  ds e zMSEe-~U~ (4.23) 
2M + = 

(4.24) 

Lemma 8. For c< ~ (1, 4/3), y ~ (1/~, 1), e > 0  sufficiently small, and 
2 E C~-I 

0121-= ds e - ' ~ g s E e  - ;r 

fl2l -~ 
= dse-~M~.((e ~.vQ1B,,l~,,~)+O~(e r~.l ~) 

'~0 

= 1 +G(2, w)+[l+o~,(1)] dse ;~i~ 22EU2 s 
2M 

+ O,(e-141-~) + O~(e- ) (t ~ ~ ) (4.25) 

ProoL The first equality follows by combining Lemmas 2 and 7, 
together with the fact that the integrand has modulus ~< 1 (pick e < �89 in 
Lemma 2). The second equality follows by expanding the exponential up to 
order 22 and afterward extending the integral to s E [0, oo). The latter 
introduces an additional error with modulus of order e x p ( -  t - 1 M  12[-~) = 
O ( e x p ( - t ~ - l ) ) ,  because R e 2 = t  -1 and 1 2 l - t  ~ (t--+ ~ )  on C~_~. Use 
that via (4.7) and (4.12) 

G(2, w) = - I ~ ds e-'~Ms,~EUs (4.26) 
"~0 

which explains why this term appears as the first-order term in the 
expansion. | 

Lemma 9. For c<> 1, 7E (1/~, 1), and p~>0 

sup f,~_ d s ( - d ) P ( e - ~ M S E e  ~vs) 
.~ E CtT- i 

= O , ( e  - ' r - l )  (t--* oo) (4.27) 
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ProoL Abbreviate 

V, = ~ ls(x) w(x) = Us + Ms (4.28) 
x 

Fix 2 ~ Ct~-~. 
First consider p = 0. Since Re 2 = t -1, w(x) ~ a for all x [by (4.2)(i)], 

and Zx ls(x)= s, it follows that 

ds Ee -2v" <~ ds e t-~as (4.29) 
121-~ 121-= 

Since 121 ~< (t z + t 2~)~/2 ~ 2t-~ for t sufficiently large, the r.h.s, of (4.29) is 
bounded above by the same integral over s e [ 2 - ' t  ~r, oo). This proves the 
claim. 

Next consider p ~> 1. For fixed s estimate 

= I~((VAPe 2v~)[ #(dw) 

[E(Vs)2P] 1/2 (E le-aV'12)l/2 i~(dw) 

<~ CpsPe t-'as (4.30) 

In the first step we interchange the p-fold differentiation with the expecta- 
tion, which is allowed by dominated convergence. In the second step we 
use Cauchy-Schwarz. In the final step, we use that w(x)>~a for all x 
and that all moments of w(x) are finite [recall (4.2)]. From (4.30) after 
integration over s t  1-121-=, oo) the claim follows. | 

I . emma  1 0. For all p/> 0 and 2 ~ C~_l 

( -  d ) P  [H(2, w)-G(2,  w)] 

( d)P(fom 1 22EUs2) (4.31) = [1 +ou(1)]  - - ~ - - ~  dse-2Ms~ 

ProoL For p = 0  the claim follows by combining (4.23) with 
Lemmas 8 and 9. To get p t> 1, first use (4.23) to write [recall (4.28)] 

(-d)PI~-l-n(,~,w)]---f?ds(-d)P~e-'~v~ 
= ~? ds 2-PEfp(2Vs) (4.32) 
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where fp(x)= xPe -x. As before, split the integration interval in the r.h.s, of 
(4.32) into two parts, namely [0, I;.I -~]  and (r21-', oe), where ~e  (1, 4/3). 
The integral over (I,ll ~, oo) is of Ou(exp( -W 1)) by Lemma9 and so 
can be absorbed in the o,(1) term in (4.31). Recalling Lemmas 2, 7, and 8, 
we can insert the indicator of the event B~,l;~l,, in (4.24) under the integral 
over [0, [21-~], making an error of Ou(exp(-I,~1-~)) + Ou(exp( - t ~  1)). 
After that we can expand the function fp around x = 2Ms, recalling (4.28). 
It is easy to see that by this procedure we obtain an expansion of the l.h.s. 
of (4.32) which exactly coincides with the expansion that we would have 
obtained had we simply interchanged (-d/d2)  p and the 2-expansion in 
(2.3). Therefore we indeed conclude (4.31). | 

k e m m a  11. For d>~ 1, 7 > 1 -d /12 ,  and p sufficiently large 

f d).e ~'[( d)Pfo lZ~U~I =o lim t a/4- p c, ~ - -~ ds e ~,M, -2 
I ~ CX9 

in #-probability (4.33) 

Proof. First compute 

d )P 2z e_;.M~ = (Ms)P- 2 e - ~ M s [ ( ) . M s ) 2  --  2p2Ms + p(p -- 1 )] 
\ -- -~2 

(4.34) 

Since 2~ C~-~, we have for t large enough 

(-d-~)P,~2e-~Ms ~Cp(sPt 2~-}-sp-lt 7+sP-2)e-t-tMs 
2 a,t / 

(4.35) 

Next use the identity 

EuEU~ = V2 2 ~12(x) = 2V2 dr ( s -  r) pr(O, O) dr 
x 

to estimate 

,~M, 1 2- 2 I a Pf a e- 5 Ev, f  (dw) (- Jo 

<<.2CpV 2 f ?  ds(spt-2~+s p It ~+s  p-2) 

xe-- ' -Ms(  dr(s--r)pr(O,O) 
~0 

d 
= O ( t 3 + p  d/2 2~) if 3 + p - ~ - 2 7 > 0  (t ~ o0) (4.36) 
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The last step in (4.36) uses the Abelian theorem for Laplace transforms 
(ref. 14, Theorem VIII.2.1) and the fact that pr(0, 0 ) =  O(r -a/2) as r ~  oe. 
Finally, from (4.36), I C,%1 = O(t -~) and the fact that le~r I ~ e for 2 e C~_~, 
we conclude 

td/n-Pf]A(dw) fc, d 2 e a t ( - d ) P  f :  

=O(t -d/4+3-37) (I'"~GO) 

So if 7 > 1 - d/12, then (4.33) follows in L~(#). 

4.5. Estimates for Ct_~\CV_l 

,~Ms 1 22~U 2 dse-  

(4.37) 

In this section we prove (4.9) in Lemma 6 for the integral restricted to 
~ C l l\Ct~--l. 

L e m m a  12. For  p 1> 0 and 7 < 1 - d/4p 

d)~ e at [H(2, w) - G(2, w)] = 0 lim t d/4-p c,-,\c; ~ - -~2 

in #-probability (4.38) 

Proof. We shall show that 

+ - ) - ~  G(2, ~<ClIm21-P-~ for all p (4.39) 

Since [eat I = e for ,~ ~ C,-~ and since # is absolutely continuous w.r.t. #o, 
with bounded Radon-Nikodym derivative, (4.39) implies 

f~c,_l\c~_ d2e; ' t ( -  d ) P  [H(2, w) -G(2 ,  w)] 

(s: ) = 0 u -, dy y p -1 = O~,(t w) (4.40) 

which implies the claim when d / 4 - p - T P  < O. 
To prove (4.39), we first note that by (1.7)-(1.10) and the first line of 

(1.23) 

H(2, w ) = ( 2 - - L ) - l  q~(w), r  
1 (4.41) 

G(2, w) = ( 2 M -  L) 1 x(w), x(w) - M2 [w(0) -- M~- 
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where we also recall (4.1), (4.3), and (4.7). This gives, since - L  is 
self-adjoint and nonnegative on L2(p0), 

H(;.,w) 

= ( ( 2 - - L )  -p 1~0, ( 2 - L )  P-~ ~o) 

= ((p, I - ( 2 " - L ) ( 2 -  L)]  - p - '  r 

f: = [(2* + 7)(2 + 7)] p-1 de%(7) (4.42) 

where the last equality follows from the spectral theorem, i.e., de%(7) is a 
positive measure with support in [0, oo) depending on q). The importance 
of the last representation is that we can substitute (2*+ 7)(2 + 7)~> Ilm 212 
to obtain 

H(2, w) 

2 2 (4.43) ~<jlm2] 2(p+1~ d : % ( s ) = l l m 2 l - 2 ( p + l ~  [l~ltL2~.o ~ 

Finally use that 

2 II ~o II ~2<.0> = M - 1E.  [ w  - 1 ( 0 )  - -  M - 1  ] < (30 

by (2.1)(ii). The same argument works for the second term in the l.h.s. 
of (4.39). Use that 2 ]ltC]]a2(,)=V2/M4<oo by (2.1)(iii). Hence (4.39) 
follows. | 

Lemmas 10-12 prove Lemma 6, and thereby Proposition 6. 

4.6. P r o o f  of  Propos i t ion  7 

In this section we prove the functional central limit theorem for G(w) 
announced in (4.5)-(4.6). We first formulate a lemma showing that in the 
limit as t --* oo we may replace p,(0, x) in (4.3) by its Gaussian limit 

/ d ~d/2 
f t ( x ) = | Z - 7 ]  e x2/2t (4.44) 

kZ~t/  

L e m m a  13, I n d ~ > l  

lim ta/4~ [ps,(0, x ) - f ~ , ( x ) ] [ w ( x ) - M ]  = 0  in L2(#) (4.45) 
t ~ o o  x 

uniformly on compact t-intervals. 

822/69/3-4-20 
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Proo[. Compute, using the i.i.d, property of #, 

E~, {ta/4 ~x [p~t(O, x)-- f~t(x)][w(x)- M]}2 

= V2ta/2 Z [ps,(0, x ) - - f , t (x ) ]  2 
X 

[2 + o(1)] V 2 sup [ta/2ps,(O, x)-f ,(x)[ 
X 

(t-~ Go) (4.46) 

The r.h.s, tends to zero as t--+ oo by the local limit theorem for SRW 
(ref. 10, p. 77). I 

Lemma 13 shows that instead of td/4~s t it suffices to consider [recall 
(4.3)] 

1 td/4~ * -- M 2 E (t--1/2)d/2 f~/M(t-mx)[w(x) - M] (4.47) 
X 

where we substitute f,t/M(x) = t-d/Zfs~M(t- reX). 
We shall now put the problem of the weak convergence of the latter 

expression in the context of a central limit theorem for Schwarz distribu- 
tions. Indeed, for e > 0 let X~ be the random Schwarz functional defined by 

X~(q~) = ~ ed/2~b(ex)[w(x) -- M], ~ e S(R d) (4.48) 
x 

The distribution of the random variable X~ is a probability measure P~ on 
the dual Schwarz space S*(Rd). In this context the central limit theorem 
reads (ref. 11, Section 3.1) 

P~ --+ #c weakly as e --+ 0 (4.49) 

where #c is the Gaussian measure on S*(R d) defined by its characteristic 
function tS) 

is.(Ra)#G(dqS*)exp(i(~*, ~5))=expl--�89 fRaqS(x)2 dx ] (4.50) 

with (qs*, ~ ) =  ~b*(~) the canonical pairing. 
If we consider any one-parameter family of Schwarz functions 

{~s: s~>0}, then under #c the stochastic process {(q~*, ~s ) :  s~>0} is an 
R-valued Gaussian process with covariance function given by (8) 

fs.(i~d)#a(dcI)* ) (~* ,  qs r ) (~*  , 05)  = V2i~r (x )~s (x )dx  (4.51) 



Long-Time Tails in a Random Diffusion Model 

N o w  re tu rn  to (4.47) a n d  app ly  the ab o v e  fo rma l i sm with 

1 
qL- MsL/M (s>0) 

~ =  t 1/2 

T h e n  we can  conc lude  tha t  

ta/4~ * ~ Z ,  weakly  as t --* 

where  {Zs:  s > 0} is G a u s s i a n  wi th  E Z ,  = 0 a nd  

V 2 ( .  

EEZ, ZA = j .  f jM(x) g/M(x) dx 

V 2 
= M 4  f~r+~l/~(0) 

V:  ( d M  ,]a/2 

- M 4 2rc( -~  s )J  
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(4.52) 

(4.52) 

(4.54) 
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